
Miniapplications: Vehicles for Co-design

SOS 15, Engelberg, Switzerland
Michael A. Heroux

Scalable Algorithms Department

Collaborators: Brian Barrett, Richard Barrett, Erik Boman, Ron Brightwell,
Paul Crozier, Doug Doerfler, Carter Edwards, Kevin Pedretti, Heidi

Thornquist, Alan Williams, Michael Wolf

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States !
Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.!

• Skeleton App:
– Communication accurate, computation fake.

• Compact App:
– A small version of a real app.
– Attempting some tie to physics.

• Scalable Synthetic Compact Applications (SSCA):
– DARPA HPCS.
– Formal specification.
– Code and detailed spec to allow re-write.

A Listing of Application Proxies

• HPC Challenge Benchmarks.
• NAS Parallel Benchmarks.
• SPEC.
• HPL: Really?

– Yes: In the ’80s
– Approximated:

•  Frontal solver, NASTRAN, ANSYS, more.
• Multifrontal/Supernodal solver: First Gordon Bell.

– Question: Why are DCA++, LSMS fastest apps?
– Answer (?): HPL was first co-design vehicle…

 that never died!

App Proxies (cont).

• UHPC Challenge Problems:
– Formal specification.
– Math, kernel extraction.
–  Intended to be open source?

• Motifs, aka dwarves.
– Really are patterns, not actionable.
“Even as cartoon characters they are sketchy.”
 (John Lewis)

Question: Is there room for another approach?

… And There are More: A crowded space

• Size: O(1K) lines.
• Focus: Proxy for key app performance issue.
• Availability: Open Source.
• Scope of allowed change: Any and all.
• Intent: Co-design: From HW registers to app itself.
• Developer & owner: Application team.
• Lifespan: Until it’s no longer useful.

Miniapps: Specs

Mantevo* Project

• Multi-faceted application performance project.
• Started 4 years ago.
• Two types of packages:

– Miniapps: Small, self-contained programs.
•  MiniFE/HPCCG: unstructured implicit FEM/FVM.
•  phdMesh: explicit FEM, contact detection.
•  MiniMD: MD Force computations.
•  MiniXyce: Circuit RC ladder.
•  CTH-Comm: Data exchange pattern of CTH.

– Minidrivers: Wrappers around Trilinos packages.
•  Beam: Intrepid+FEI+Trilinos solvers.
•  Epetra Benchmark Tests: Core Epetra kernels.
•  Dana Knoll working on new one.

• Open Source (LGPL)
• Staffing: Application & Library developers.

* Greek: augur, guess, predict, presage

Pre-Mantevo

Identify Performance
Impacting elements of

Application n

Identify Performance
Impacting elements of

Application 2

Background

Identify Performance
Impacting elements of

Application 1

Improve Implementation
of Application n

Improve Implementation
of Application 2

Improve Implementation
of Application 1

Develop Computer
System Computer System Developer

• Goal: Develop scalable
computing capabilities via:
–  Application analysis.
–  Application improvement.
–  Computer system design.

•  Fixed timeline.
• Countless design decisions.
• Collaborative effort.
• Pre-Mantevo:

– Work with each, large
application.

–  Application developers
have conflicting demands:

•  Features,
•  performance.

–  Application performance
profiles have similarities.

App Developers

Benchmark Analyst

Mantevo Effort

Results:
•  Better-informed design decision.
•  Broad dissemination of optimization techniques.
•  Incorporation of external R&D results.

• Develop:
–  Mini apps, mini drivers.

• Goals:
–  Aid in system design decisions:

•  Proxies for real apps.
•  Easy to use, modify or completely

rewrite, e.g., multicore studies.
–  Guide application and library

developers:
•  Get first results in new situations:

apps/libs know what to expect.
•  Better algorithms: Exploration of new

approaches.
–  Predict performance of real

applications in new situations.
–  New collaborations.

Mantevo

Develop/Use Mini
Application/Driver

Modify/Rewrite Mini-
Application, Publish

Results

Develop Computer
System

Computer System Developer

External Collaborator

Mantevo Developer Benchmark Analyst

Pre-Mantevo

Identify Performance
Impacting elements of

Application n

Identify Performance
Impacting elements of

Application 2
Didn’t give up on previous

approach

Just added tools
upstream

Identify Performance
Impacting elements of

Application 1

Improve Implementation
of Application n

Improve Implementation
of Application 2

Improve Implementation
of Application 1

Develop Computer
System Computer System Developer

App Developers

Benchmark Analyst

Examples

• Glorified unstructured, distributed CG solve.
• SLOCCOUNT: 4091 SLOC (C++).
• Scalable (in z-dimension) to any processor count.
• Many targets:

–  Internode: MPI or not.
–  Intranode: Serial, OpenMP,
– Scalar: float, double, complex
–  Int: 8, 16, 32, 64.

• Studied in numerous settings.

First Mantevo miniapp: HPCCG

• Simple logic experiment:
– Many implicit apps spend 90+% of time in solver.
– Solver is multi-level preconditioned Krylov method.

• CG is (simple) Krylov method.
• Preconditioner time dominated by smoother (GS, ILU)
• GS, ILU similar to SpMV (except on multicore).

– HPCCG is SpMV+CG.
• Can’t be accept results blindly.

– App ownership of miniapp important here.

How could HPCCG really be a proxy?

Data Placement on NUMA

• Memory Intensive computations: Page placement has
huge impact.

• Most systems: First touch.
• Application data objects:

– Phase 1: Construction phase, e.g., finite element
assembly.

– Phase 2: Use phase, e.g., linear solve.
• Problem: First touch difficult to control in phase 1.
• Idea: Page migration.

– Not new: SGI Origin. Many old papers on topic.

13

Data placement experiments

• MiniApp: HPCCG
• Construct sparse linear system, solve with CG.
• Two modes:

– Data placed by assembly, not migrated for NUMA
– Data migrated using parallel access pattern of CG.

• 1 hour of effort to modify code.
• Results on dual socket quad-core Nehalem system.
• Migrate-on-next-touch:

– RT/OS feature.
– Study: Pedretti, Merritt, Managing Shared Memory Data

Distribution in Hybrid HPC Applications,
SAND2010-6262, Sep 2010.

14

Weak Scaling Problem

  MPI and conditioned data approach comparable.
  Non-conditioned very poor scaling.

15

Much more…

• Rewrites of HPCCG:
– Pthreads, OpenMP, Chapel, qthreads…

• MiniFE:
– Prototype of Kokkos Node API.
– Prototype of pipeline and task graph node parallelism.

• Skeleton app of miniapp!
• Performance comparisons of different platforms:

– All.

0

4

2 1

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0
1
4
3

0
1
2
3
4
5
6
7
8

1
2
5
4

3
4
7
6

4
5
8
7

Global Matrix

Assemble
Rows
0,1,2

Assemble
Rows
3,4,5

Assemble
Rows
6,7,8

TBB Pipeline for FE assembly

FE Mesh

Element-stiffness
matrices computed

in parallel

Launch elem-data
from mesh

Compute stiffnesses
& loads

Assemble rows of stiffness
into global matrix

Serial Filter Parallel Filter Several Serial Filters in series

Each assembly filter assembles certain rows from a
stiffness, then passes it on to the next assembly filter

Work done in MiniFE: Courtesy of Alan Williams	

•  Observe: Iteration count increases with number of subdomains.
•  With scalable threaded smoothers (LU, ILU, Gauss-Seidel):

–  Solve with fewer, larger subdomains.
–  Better kernel scaling (threads vs. MPI processes).
–  Better convergence, More robust.

•  Exascale Potential: Tiled, pipelined implementation.
•  Three efforts:

–  Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
–  Decomposition by partitioning
–  Multithreaded direct factorization

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)	

MPI
Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111

18
Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and ���
Michael A. Heroux and Erik G. Boman, VECPAR 2010.	

# MPI Ranks	

Emerging Abstract Machine Model:
Thread team

• Multiple threads.
• Fast barrier.
• Shared, fast access memory pool.
• Required to address the constraints of global SIMT.
• Example: Nvidia SM
• X86 more vague, emerging more clearly in future.
• Prototyped in variant of HPCCG.

Managing Miniapp Data

• Input parameters:
– Command line.
– YAML file.

• Output:
– YAML.
– Embeds input parameters.
– Output file can be input.

• Data parsing and collection:
– Email list submission of YAML file.
– CoPylot: Digests email, populates database.

• Common YAML data functions across all miniapps.

Data Management
Common Look-and-Feel: YAML

YAML ain’t a Markup Language
•  de facto standard format
•  Human readable
•  Convertible to/from XML, others

currentElement->get("performance_summary")->add("total","");
currentElement->get("performance_summary")->get("total")->add("time",times[0]);
currentElement->get("performance_summary")->get("total")->add("flops",3.0*fnops);
currentElement->get("performance_summary")->get("total")->add("mflops",3.0*fnops/times[0]/1.0E6);

YAML Output File Excerpts

beefy.109% ./miniFE.x nx=30 ny=30 nz=30
 creating/filling mesh...0.00031209s, total time: 0.00031209
generating matrix structure...0.0196991s, total time: 0.0200112
 assembling FE data...
get-nodes: 0.0035727
compute-elems: 0.090822
sum-in: 0.0277233
0.125864s, total time: 0.145875
 imposing Dirichlet BC...0.0176551s, total time: 0.16353
making matrix indices local...8.10623e-06s, total time: 0.163538
Starting CG solver ...
Initial Residual = 182.699
Iteration = 5 Residual = 43.6016
Iteration = 10 Residual = 6.13924
Iteration = 15 Residual = 0.949901
Iteration = 20 Residual = 0.131992
Iteration = 25 Residual = 0.0196088

…

Platform:
 hostname: beefy.cs.csbsju.edu
 kernel name: 'Linux'
 kernel release: '2.6.34.7-66.fc13.x86_64'
 processor: 'x86_64'
Build:
 CXX: '/usr/lib64/openmpi/bin/mpicxx'
 compiler version: 'g++ (GCC) 4.4.5 20101112 (Red Hat

4.4.5-2)'
 CXXFLAGS: '-O3'
 using MPI: yes
 Threading: none
Run Date/Time: 2011-03-14, 22-30-26
Rows-per-proc Load Imbalance:
 Largest (from avg, %): 0
 Std Dev (%): 0
…

Total:
 Total CG Time: 0.065695
 Total CG Flops: 9.45762e+07
 Total CG Mflops: 1439.63
 Time per iteration: 0.0013139
Total Program Time: 0.237604

Emerging value: Broad Distribution
The Sentinel Dynamic

Validation
Are Miniapps Predictive?

Does MiniFE Predict Charon Behavior?
Processor Ranking: 8 MPI tasks; 31k DOF/core

•  Charon steady-state drift-diffusion BJT
•  Nehalem (Intel 11.0.081 –O2 –xsse4.2; all cores of dual-socket quadcore)
•  12-core Magny-Cours (Intel 11.0.081 –O2; one socket, 4 MPI tasks/die)
•  Barcelona (Intel 11.1.064 –O2; use two sockets out of the quad-socket)
•  2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
•  Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
•  Try to compare MiniFE “assembling FE”+”imposing BC” time with Charon equivalent

CG FE assem+BC
1 Nehalem Nehalem
2 MC(1.7) MC(1.7)
3 Barc(2.7) Barc(1.8)

Charon MiniFE

LS w/o ps LS w/ ps Mat+RHS
1 Nehalem Nehalem Nehalem
2 MC(1.7) MC(1.8) MC(1.46)
3 Barc(2.8) Barc(2.5) Barc(1.52)

Number in parenthesis is factor greater than #1 time

MiniFE Predict Charon? Multicore Efficiency Dual-
Socket 12-core Magny-Cours : 124k DOF/core

Charon MiniFE

cores CG eff
4 Ref

8 89

12 73

16 61

20 54

24 45

cores LS w/o ps eff LS w/ ps eff

4 Ref Ref

8 87 89

12 74 78

16 61 66

20 49 54

24 40 45

•  Charon steady-state drift-diffusion BJT; Intel 11.0.081 –O2
•  Weak scaling study with 124k DOF/core
•  2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
•  Efficiency: ratio of 4-core time to n-core time (expressed as percentage)
•  Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
•  100 Krylov iterations for both MiniFE and Charon (100 per Newton step)

• First results are good:
– No misleading trends.

• Careful calibration required: Apples to apples.
• Big plus: Ease of porting.

Miniapps Predictive?

• SLOCCOUNT (tool from David A. Wheeler).
– Charon physics: 191,877 SLOC.
– Charon + nevada framework 414,885 SLOC
– Charon_TPL 4,022,296 SLOC

• Library dependencies:
– 25 Trilinos package.
– 15 other TPLs.

• Requires “heroic effort” to build.
• MPI-only, no intranode parallelism.
• Export controlled.
• Stats courtesy of Roger Pawlowski.

Charon Complexity

• SLOCCOUNT:
– Main code: 6,469 SLOC
– Optional libraries (from Trilinos): 37,040 SLOC

• Easy to build:
– Multiple targets:

•  Internode: MPI or not.
•  Intranode: Serial, Pthreads, OpenMP, TBB, CUDA.

– Dialable properties:
• Compute load imbalance.
• Communication imbalance.
• Data types: float, double, mixed.

• Open source.
• Stats: Courtesy of me.

MiniFE Complexity

• CTH:
– Multi-material, large deformation, shock physics.
– Used through DOE complex, heavily used by DOD.

• Each time step:
– 2D face exchanges (19 times in each of 3 dims).
– 1 face exchange: 40 arrays.
– 100x100x100 local problem: 3.2 MB per face.

• Future systems (e.g. Cray Cielo):
– Higher network injection rates.

• Goal: Study different comm algorithms to exploit
rates.

Next Target App: CTH

• Miniapp: 2D face exchange with simple 27-pt
computation.

• Explore spectrum of comm algorithms:
– Standard approach as baseline.
– Transmit each variable as soon as available.
– Transmit as soon as any 2D slide is availabe.

• Introduce dialable load imbalance.
• Results?

– See Richard Barrett’s paper, submission to SC’11.

Latest Miniapp: CTH Comm Proxy

• Miniapps:
–  In many ways similar to other efforts.
– Two important distinctions:

• App team develops and owns.
• Miniapp retired when no longer useful.

– Some strengths:
• Completely open process: LGPL, validation.
• Highly collaborative.

• Challenges:
– Engaging already-busy apps developers.
– Keeping miniapps relevant over time (to avoid

premature retirement).
• Mantevo site: http://software.sandia.gov/mantevo
• Soon: mantevo.org (website up, not populated)

Summary

